Homework Set 1

DUE: JAN 19, 2017 (IN CLASS)

- 1. Write the equation for the sphere of radius 4 centered at (1, 2, 3). Is the origin $\vec{0}$ inside or outside this sphere?
- 2. Given vectors $\vec{v} = (1, 0, -1)$ and $\vec{w} = (0, 2, 2)$, find the coordinates and the length of the vectors $\vec{a} = \vec{v} + \vec{w}$, $\vec{b} = 2\vec{v} 3\vec{w}$, and $\vec{c} = -2\vec{v} + \vec{w}$.
- 3. Suppose that three people are pulling unit length ropes that are tied together forming a Y shape. Assume that each of them pulls with the same strength, so the configuration does not move. Write down the 2D vectors $\vec{F_1}$, $\vec{F_2}$, and $\vec{F_3}$ that represent the forces exerted on the point where the ropes are tied (which we assume is the center of mass of the system).

HINT: Choose coordinates x, y such that the center point is at the origin, and $\vec{F_1}$ is parallel to the x-axis, that is, $\vec{F_1} = (|\vec{F_1}|, 0)$.

- 4. Find x such that the vectors (x, -x, 1) and (2, x, -1) are orthogonal. Are there values of x for which each of these vectors is unit, not necessarily at the same time?
- 5. The set of points equidistant from the points (2, -1, 1) and (4, 3, -5) is a plane. Find real numbers a, b, c, and d, such that ax + by + cz + d = 0 is the equation of this plane.