Homework Set 7

Due: Mar 16, 2017 (in class)

1. Compute the following multiple integrals:
(a) $\int_{0}^{1} \int_{e^{y}}^{e} \frac{e-x}{\ln x} \mathrm{~d} x \mathrm{~d} y$
(b) $\int_{0}^{\pi / 2} \int_{x}^{\pi / 2} \frac{\sin y}{y} \mathrm{~d} y \mathrm{~d} x$
(c) $\int_{0}^{2} \int_{0}^{4-x^{2}} \int_{0}^{x} \frac{\sin (2 z)}{4-z} \mathrm{~d} y \mathrm{~d} z \mathrm{~d} x$
2. Find the volume of the solid in the first octant bounded by the coordinate planes, the cylinder $x^{2}+y^{2}=4$ and the plane $z+y=3$.
3. A farmer has to fence off a rectangular portion of land along a river, but no fence is needed along the river bank. What should be the dimensions of the fenced region that require the least amount of fencing but enclose a total area of $3,200 \mathrm{~m}^{2}$?
4. Certain bacteria (e.g., lactobacillus subtilis), have roughly the shape of a round cylinder of length L and radius R, with two spherical caps of radius R attached to each end. Assuming that it is an evolutionary advantage for this bacteria to have minimal surface area given its fixed volume $v_{0}>0$, find the implied relation between L and R that should be observed in nature.
5. Use polar coordinates to compute the following double integrals:
(a) $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{2}{\left(1+x^{2}+y^{2}\right)^{2}} \mathrm{~d} y \mathrm{~d} x$
(b) $\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \ln \left(1+x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y$
