Exam 1 Review Questions

This material is compiled from exams from previous years as well as problems made by myself.

1. A curve C in 3 -space is defined by: (4 cost, $4 \sin t, 3 t$)

Find the point on C which has distance 2π from the point $(4,0,0)$ as measured along the curve.
2. The planes $3 x+5 y-z=2$ and $x+3 y+z=5$ intersect in a line. Find an equation for this line.
3. Find the point on the plane $2 x-4 y+7 z=3$ closest to the point $(1,2,3)$
4. Let a be a scalar that makes the vectors v and w orthogonal.
$\mathrm{v}=(1,-\mathrm{a}, 20) ; \mathrm{w}=(5 \mathrm{a}, 1,1)$
Let b be the positive number that makes the triangle with vertices $\mathrm{A}(5,-1,0), \mathrm{B}(-2,-2$, $3), C(5,2, b)$ be a right triangle at C.
Find $a+b$.
5. Find the arc length of $r(t)=\left(\cos ^{3} t, \sin ^{3} t, 1\right)$ for $0<t<\pi / 4$
6. Find the distance between the point $(1,4,2)$ and the line passing through the points $(-1$, $3,-1)$ and $(1,2,3)$
7. Find the equation (in terms of r, R, and h) for the ellipsoid whose cross sections at $z=0$ and $\mathrm{z}=\mathrm{h}$ are circles with radius R and r , respectively.
8. Find the parametric equation for the line of intersection between the planes $x+2 y-z=2$ and $-2 x+2 y+2 z=-1$
9. An object is hit with an angle of 60° and lands on the ground 5 seconds later. Assuming $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, what was the objects initial velocity?
10. A ball is hit with horizontal velocity of $20 \mathrm{~m} / \mathrm{s}$ and a vertical upward velocity of $30 \mathrm{~m} / \mathrm{s}$. If the ball is initially 1 m above the ground when it is hit, how high a fence will the ball clear if the fence is 80 m away from where the ball is hit? Assume $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
11. Let L be the line through the origin that is perpendicular to the plane $2 x+y+z=7$. Find the distance between the point $(-4,3,5)$ and L.
12. Consider the line L with slope m through the point $(-1,0)$. The line L intersects the unit circle at two points, $(-1,0)$ and P. What is the cosine of the angle between L and the tangent line to the circle through P ?
13. The set of points equidistant from $(2,-1,1)$ and $(4,3,-5)$ form a plane. Find the equation of the plane.
14. Find the value of the x coordinate where the plane through the points $(4,1,1),(1,2,1)$ and ($1,1,2$) intersect the x axis.
15. Find the coordinate the point on the plane $x-2 y+z=3$ closest to the point $(1,1,1)$
16. Find the curvature of $r(t)=(-t,-\ln (\cos t), 0)$ at $t=\pi / 4$.
17. What is the maximum value of the curvature of $r(t)=\left(t, t, t^{2}\right)$?
18. Find the unit tangent vector to the curve $r(t)=\left(e^{2 t} \operatorname{cost}, e^{2 t} \sin t, e^{2 t}\right)$ at $t=\pi / 2$

