Math 114, Spring 2017

Practice Problems for Midterm 1

1. Write the equation of the sphere centered at $P_{1}=(1,0,1)$ with radius $r_{1}=2$ and of the sphere centered at $P_{2}=(0,2,0)$ with radius $r_{2}=1$. Determine the relative position of these spheres, that is, whether one is contained inside the other, or they intersect (at one or more points), or they are disjoint.
2. Let π_{1} be the plane through the origin which is spanned by the vectors $\vec{v}=(1,1,0)$ and $\vec{w}=(1,-1,0)$. Let π_{2} be the plane that contains the points $P=(0,1,4), Q=(-2,3,4)$ and $R=(1, \sqrt{2}, 4)$. What is the distance between π_{1} and π_{2} ?
Note: The distance between two planes is the shortest possible distance between points in each of the planes
3. Consider the following curves in space:
$\alpha(t)=(-1+\cos t, \sin t,-t) \quad \beta(t)=\left(t, t^{2}, t^{3}\right) \quad \gamma(t)=\left(t^{4}-t^{2},-1+e^{t} \cos t, 1-e^{2 t}\right)$
Compute the volume of the parallelepiped spanned by the tangent vectors $\alpha^{\prime}(0), \beta^{\prime}(0)$, and $\gamma^{\prime}(0)$ of these curves at $t=0$.
4. Consider the quadric surface given by $z=2 x^{2}-4 y^{2}$. Classify the conics obtained by intersecting this surface with each of the coordinate planes ($x y$-plane, $x z$-plane, and $y z$-plane). Sketch these planar sections (but you do not need to sketch the surface).
5. Compute the arc length of the curve parametrized by

$$
x(t)=t^{3 / 2} \quad y(t)=(1-t)^{3 / 2},
$$

for $0 \leq t \leq 1$, and compute the curvature of the curve at $t=\frac{1}{2}$.
6. Imagine a strange world where Newton's second law doesn't hold, but you know that the acceleration of a projectile with trajectory $\vec{\gamma}(t)$ is given by $\vec{a}(t)=-6 t \vec{j} \mathrm{~m} / \mathrm{s}^{2}$, where \vec{j} stands for the vertical direction. This projectile is fired from ground level with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$ in the horizontal direction and $49 \mathrm{~m} / \mathrm{s}$ in the vertical direction. How far has the projectile travelled horizontally when it strikes the ground?
7. Consider the curve parametrized by

$$
x(t)=\sqrt{2} \sin t \quad y(t)=1-\cos t \quad z(t)=1+\cos t .
$$

Find the unit vectors $\vec{T}, \vec{N}, \vec{B}$ (orthonormal moving frame) at $t=0$.
8. Find the parametrization $\vec{r}(t)$ of a curve given that

$$
\frac{\mathrm{d}^{2} \vec{r}}{\mathrm{~d} t^{2}}(t)=\left(e^{t}, \sin t, t\right)
$$

and

$$
\frac{\mathrm{d} \vec{r}}{\mathrm{~d} t}(0)=(0,0,1)
$$

and

$$
\vec{r}(1)=(e, 1,1) .
$$

9. Consider the curve given in polar coordinates by $r=-4 \sin \theta$. Write an expression for this curve in Cartesian coordinates (that is, x and y) and recognize what conic it is.
Hint: Multiply both sides of the equation in polar coordinates by r.
