## Homework Set 1

Due: Feb 1, 2017 (in class)

1. Shifrin (page 8): Exercise 4
2. Shifrin (page 10): Exercise 13
3. Shifrin (page 18): Exercise 3 (c)
4. Shifrin (page 18): Exercise 4
5. Shifrin (page 18): Exercise 7
6. Optimal regularity for parametrization by arc length

Show that if $\alpha:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{n}$ is Lipschitz (i.e., each coordinate is a Lipschitz function), then $\alpha(t)$ admits a parametrization by arc length, that is, there exists an increasing function $S:\left[s_{0}, s_{1}\right] \rightarrow\left[t_{0}, t_{1}\right]$ such that the curve $\tilde{\alpha}:\left[s_{0}, s_{1}\right] \rightarrow \mathbb{R}^{n}, \tilde{\alpha}(s):=(\alpha \circ S)(s)$, satisfies $\left\|\tilde{\alpha}(s)-\tilde{\alpha}\left(s^{\prime}\right)\right\|=\left|s-s^{\prime}\right|$ for all $s, s^{\prime} \in\left[s_{0}, s_{1}\right]$.
Remark: It can be shown that the least regularity needed for $\alpha$ to be rectifiable, i.e., for its length to be well-defined and finite, is that its coordinates are Lipschitz functions.
7. Challenge problem 1 (Optional)

The roulette $\gamma_{P}$ of a point $P$ along a curve $\alpha$ is the curve traced by the point $P$ when $\alpha$ is rolled, without slipping, along a straight line. Let $\alpha$ be the ellipse $\frac{x^{2}}{a^{2}}+\frac{(y+c)^{2}}{b^{2}}=1$, where $0<a<b$ and $c=\sqrt{b^{2}-a^{2}}$, so that $P=(0,0)$ is one of the focal points of $\alpha$. Show that the roulette $\gamma_{P}$ in this case can be parametrized as:

$$
\gamma_{P}(t)=\left(\int_{0}^{t} \sqrt{b^{2}-c^{2} \cos ^{2}(z)} \mathrm{d} z-\frac{c \sin (t)(b-c \cos (t))}{\sqrt{b^{2}-c^{2} \cos ^{2}(t)}}, \frac{a(b-c \cos (t))}{\sqrt{b^{2}-c^{2} \cos ^{2}(t)}}-b+c\right)
$$

Note: this curve $\gamma_{P}$ is called an undulary or elliptic catenary. An example with $a=\frac{1}{2}$ and $b=1$ is plotted below, with $\alpha$ in red and $\gamma_{P}$ in blue.

8. Challenge problem 2 (Optional)

Write some code in your favorite mathematical software (e.g., Mathematica) that generates a plot like the above, and print out code and example plots.
Note: you will need to use elliptic integrals to evaluate the $x$-coordinate of $\gamma_{P}$.

