Homework Set 1

DUE: FEB 1, 2017 (IN CLASS)

- 1. Shifrin (page 8): Exercise 4
- 2. Shifrin (page 10): Exercise 13
- 3. Shifrin (page 18): Exercise 3 (c)
- 4. Shifrin (page 18): Exercise 4
- 5. Shifrin (page 18): Exercise 7
- 6. Optimal regularity for parametrization by ARC length

Show that if $\alpha : [t_0, t_1] \to \mathbb{R}^n$ is Lipschitz (i.e., each coordinate is a Lipschitz function), then $\alpha(t)$ admits a parametrization by arc length, that is, there exists an increasing function $S : [s_0, s_1] \to [t_0, t_1]$ such that the curve $\tilde{\alpha} : [s_0, s_1] \to \mathbb{R}^n$, $\tilde{\alpha}(s) := (\alpha \circ S)(s)$, satisfies $\|\tilde{\alpha}(s) - \tilde{\alpha}(s')\| = |s - s'|$ for all $s, s' \in [s_0, s_1]$.

Remark: It can be shown that the least regularity needed for α to be *rectifiable*, i.e., for its length to be well-defined and finite, is that its coordinates are Lipschitz functions.

7. CHALLENGE PROBLEM 1 (OPTIONAL)

The roulette γ_P of a point P along a curve α is the curve traced by the point P when α is rolled, without slipping, along a straight line. Let α be the ellipse $\frac{x^2}{a^2} + \frac{(y+c)^2}{b^2} = 1$, where 0 < a < b and $c = \sqrt{b^2 - a^2}$, so that P = (0,0) is one of the focal points of α . Show that the roulette γ_P in this case can be parametrized as:

$$\gamma_P(t) = \left(\int_0^t \sqrt{b^2 - c^2 \cos^2(z)} dz - \frac{c \sin(t)(b - c \cos(t))}{\sqrt{b^2 - c^2 \cos^2(t)}}, \frac{a(b - c \cos(t))}{\sqrt{b^2 - c^2 \cos^2(t)}} - b + c\right)$$

Note: this curve γ_P is called an *undulary* or *elliptic catenary*. An example with $a = \frac{1}{2}$ and b = 1 is plotted below, with α in red and γ_P in blue.

8. CHALLENGE PROBLEM 2 (OPTIONAL)

Write some code in your favorite mathematical software (e.g., Mathematica) that generates a plot like the above, and print out code and example plots. Note: you will need to use elliptic integrals to evaluate the x-coordinate of γ_P .